Anti-Tumor Effects of Bak-Proteoliposomes against Glioblastoma.
نویسندگان
چکیده
Despite palliative treatments, glioblastoma (GBM) remains a devastating malignancy with a mean survival of about 15 months after diagnosis. Programmed cell-death is de-regulated in almost all GBM and the re-activation of the mitochondrial apoptotic pathway through exogenous bioactive proteins may represent a powerful therapeutic tool to treat multidrug resistant GBM. We have reported that human Bak protein integrated in Liposomes (LB) was able, in vitro, to activate the mitochondrial apoptotic pathway in colon cancer cells. To evaluate the anti-tumor effects of LB on GBM, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and Western blot analysis were performed on GL26 murine cell line. LB treatment shows a dose-dependent inhibition of cell viability, followed by an up-regulation of Bax and a down-modulation of JNK1 proteins. In GL26-bearing mice, two different routes of administration were tested: intra-tumor and intravenous. Biodistribution, tumor growth and animal survival rates were followed. LB show long-lasting tumor accumulation. Moreover, the intra-tumor administration of LB induces tumor growth delay and total tumor regression in about 40% of treated mice, while the intravenous injection leads to a significant increased life span of mice paralleled by an increased tumor cells apoptosis. Our findings are functional to the design of LB with potentiated therapeutic efficacy for GBM.
منابع مشابه
Epi-reevesioside F inhibits Na+/K+-ATPase, causing cytosolic acidification, Bak activation and apoptosis in glioblastoma
Epi-reevesioside F, a new cardiac glycoside isolated from the root of Reevesia formosana, displayed potent activity against glioblastoma cells. Epi-reevesioside F was more potent than ouabain with IC50 values of 27.3±1.7 vs. 48.7±1.8 nM (P < 0.001) and 45.0±3.4 vs. 81.3±4.3 nM (P < 0.001) in glioblastoma T98 and U87 cells, respectively. However, both Epi-reevesioside F and ouabain were ineffect...
متن کاملP157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform
Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis. In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...
متن کاملCombination therapy of 7-O-succinyl macrolactin A tromethamine salt and temozolomide against experimental glioblastoma
7-O-succinyl macrolactin A has shown anti-inflammatory, anti-angiogenesis, and anti-metastatic effects. It also exhibits strong suppression of tumor growth. In our previous study, we assessed the anti-neoplastic effects of 7-O-succinyl macrolactin A tromethamine salt (SMA salt) on a glioma cell line. Moreover, according to our data, SMA salt might be contributed to the inhibitory effects on mig...
متن کاملComparison of Toxic Effects of Glaucium Flavum Hydroalcoholic Extract on glioblastoma cell line (C118) and neuronal neurosphere (NCs)
Background and aim: Glioblastoma tumors are the most invasive brain tumors with the origin of neural tissue in the brain. Because of the low success rate of treatment for this type of tumor, the need for a search for new therapies is justified. Glacium flavum is widely used in the pharmaceutical industry due to its richness in alkaloids. In this study, the toxic effects of hydroalcoholic extrac...
متن کاملO27: Interaction of Cancer Stem Cells and Microglia in Glioblastoma Multiforme
Malignant gliomas are highly invasive brain tumors with the occurrence of multiple microglia/macrophages in the tumor microenvironment. Macrophages/microglia that found in glioma microenvironment, as tumor-infiltrating immune cells, can play a harmful role in tumor progression. In addition, glioblastoma multiforme (GBM) contains multiple aberrant differentiation and tumorigenic cancer stem cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2015